Craniosynostosis Panel

SEQmethod-seq-icon Our Sequence Analysis is based on a proprietary targeted sequencing method OS-Seq™ and offers panels targeted for genes associated with certain phenotypes. A standard way to analyze NGS data for finding the genetic cause for Mendelian disorders. Results in 21 days. DEL/DUPmethod-dup-icon Targeted Del/Dup (CNV) analysis is used to detect bigger disease causing deletions or duplications from the disease-associated genes. Results in 21 days. PLUSmethod-plus-icon Plus Analysis combines Sequence + Del/Dup (CNV) Analysis providing increased diagnostic yield in certain clinical conditions, where the underlying genetic defect may be detectable by either of the analysis methods. Results in 21 days.

Test code: MA2901

The Blueprint Genetics Craniosynostosis Panel is a 34 gene test for genetic diagnostics of patients with clinical suspicion of craniosynostosis.

This panel can be used in differential diagnostics of craniosynostosis, which is a primary abnormality of skull growth and may occur in an isolated setting or as part of a syndrome. This panel is part of Comprehensive Skeletal / Malformation Syndrome Panel.

About Craniosynostosis

Craniosynostosis is defined as the premature fusion of one or more cranial sutures leading to secondary distortion of skull shape. It may result from a primary defect of ossification (primary craniosynostosis) or, more commonly, from a failure of brain growth (secondary craniosynostosis). Premature closure of the sutures (fibrous joints) causes the pressure inside of the head to increase and the skull or facial bones to change from a normal, symmetrical appearance resulting in skull deformities with a variable presentation. Craniosynostosis may occur in an isolated setting or as part of a syndrome with a variety of inheritance patterns and chances for reoccurrence, depending on the specific syndrome present. Craniosynostosis occurs in 1/2,200 live births.

Mutation in the TWIST1 has been found to cause coronal and sagittal forms of craniosynostosis (CRS1). Other forms have been associated with mutations in other genes such as MSX2 (CRS-2), TCF12 (CRS-3) and ALX4(CRS-5).

Availability

Results in 3-4 weeks. We do not offer a maternal cell contamination (MCC) test at the moment. We offer prenatal testing only for cases where the maternal cell contamination studies (MCC) are done by a local genetic laboratory. Read more.

Genes in the Craniosynostosis Panel and their clinical significance
GeneAssociated phenotypesInheritanceClinVarHGMD
ALPLOdontohypophosphatasia, Hypophosphatasia perinatal lethal, infantile, juvenile and adult formsAD/AR32270
ALX3Frontonasal dysplasia type 1AR77
ALX4Frontonasal dysplasia type 2, Parietal foraminaAD/AR1322
BMP4Microphthalmia, syndromic, Orofacial cleftAD942
EDN3Hirschsprung disease, Central hypoventilation syndrome, congenital, Waardenburg syndromeAD/AR621
EDNRBHirschsprung disease, ABCD syndrome, Waardenburg syndromeAD/AR562
EFNB1Craniofrontonasal dysplasiaXL15115
ESCO2SC phocomelia syndrome, Roberts syndromeAR2930
FGFR1Pfeiffer syndrome, Trigonocephaly, Hypogonadotropic hypogonadism, Osteoglophonic Dwarfism - Craniostenosis, Hartsfield syndromeAD/Digenic/Multigenic41232
FGFR2Apert syndrome, Pfeiffer syndrome, Jackson-Weiss syndrome, Lacrimoauriculodentodigital syndrome, Beare-Stevenson cutis gyrata syndrome, Antley-Bixler syndrome without genital anomalies or disordered steroidogenesis, Craniofacial-skeletal-dermatological dysplasia, Crouzon syndrome, Bent bone dysplasiaAD47145
FGFR3Lacrimoauriculodentodigital syndrome, Muenke syndrome, Crouzon syndrome with acanthosis nigricans, Camptodactyly, tall stature, and hearing loss (CATSHL) syndrome, Achondroplasia, Hypochondroplasia, Thanatophoric dysplasia type 1, Thanatophoric dysplasia type 2, SADDANAD/AR4768
FLNBLarsen syndrome (dominant), Atelosteogenesis type 1, Atelosteogenesis type 3, Spondylo-carpal-tarsal dyspasiaAD/AR3898
FREM1Bifid nose, Manitoba oculotrichoanal syndrome, TrigonocephalyAD/AR823
GDF5Multiple synostoses syndrome, Fibular hypoplasia and complex brachydactyly, Acromesomelic dysplasia, Hunter-Thompson, Symphalangism, proximal, Chondrodysplasia, Brachydactyly type A2, Brachydactyly type C, Grebe dysplasiaAD/AR2252
GLI3Acrocallosal syndrome, Pallister-Hall syndrome, Grieg cephalopolysndactyly syndrome, Postaxial polydactyly type A, Preaxial polydactyly type 3, Preaxial polydactyly type 4AD49221
IFT122*Sensenbrenner syndrome, Cranioectodermal dysplasia (Levin-Sensenbrenner) type 1, Cranioectodermal dysplasia (Levin-Sensenbrenner) type 2AR913
IFT140Short -rib thoracic dysplasia with or without polydactyly, Asphyxiating thoracic dysplasia (ATD; Jeune)AR1446
MASP13MC syndromeAR714
MITFRenal cell carcinoma with or without malignant melanoma, Tietz albinism-deafness syndrome, Waardenburg syndrome, Melanoma, cutaneous malignantAD1550
MSX2*Parietal foramina, Parietal foramina with cleidocranial dysplasia, Craniosynostosis Boston typeAD924
NOGTarsal-carpal coalition syndrome, Multiple synostosis syndrome, Stapes ankylosis with broad thumb and toes (Teunissen-Cremers syndrome), Symphalangism, proximal, Brachydactyly type B2AD1861
PAX3Craniofacial-deafness-hand syndrome, Waardenburg syndromeAD/AR20135
PORDisordered steroidogenesis due to cytochrome p450 oxidoreductase deficiency, Antley-Bixler syndromeAR1284
RECQL4Baller-Gerold syndrome, RAPADILINO syndrome, Rothmund-Thomson syndromeAR3492
RETHirschsprung disease, Central hypoventilation syndrome, congenital, Pheochromocytoma, Medullary thyroid carcinoma, Multiple endocrine neoplasiaAD/AR80405
SKIShprintzen-Goldberg syndromeAD1520
SOX10Peripheral demyelinating neuropathy, central dysmyelination, Waardenburg syndrome, and Hirschsprung diseaseAD31119
TCF12CraniosynostosisAD1352
TGFBR1Loeys-Dietz syndromeAD2567
TGFBR2Loeys-Dietz syndromeAD54130
TTRDystransthyretinemic hyperthyroxinemia, Amyloidosis, hereditary, transthyretin-relatedAD51138
TWIST1Saethre-Chotzen syndrome, Robinow-Sorauf syndrome, CraniosynostosisAD14188
WDR19Retinitis pigmentosa, Nephronophthisis, Short -rib thoracic dysplasia with or without polydactyly, Senior-Loken syndrome, Cranioectodermal dysplasia (Levin-Sensenbrenner) type 1, Cranioectodermal dysplasia (Levin-Sensenbrenner) type 2, Asphyxiating thoracic dysplasia (ATD; Jeune)AD/AR1625
WDR35Cranioectodermal dysplasia (Levin-Sensenbrenner) type 1, Cranioectodermal dysplasia (Levin-Sensenbrenner) type 2, Short rib-polydactyly syndrome type 5AR1524
  • * Some regions of the gene are duplicated in the genome leading to limited sensitivity within the regions. Thus, low-quality variants are filtered out from the duplicated regions and only high-quality variants confirmed by other methods are reported out. Read more.

Gene, refers to HGNC approved gene symbol; Inheritance to inheritance patterns such as autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL); ClinVar, refers to a number of variants in the gene classified as pathogenic or likely pathogenic in ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/); HGMD, refers to a number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD, http://www.hgmd.cf.ac.uk/ac/). The list of associated (gene specific) phenotypes are generated from CDG (http://research.nhgri.nih.gov/CGD/) or Orphanet (http://www.orpha.net/) databases.

Blueprint Genetics offers a comprehensive Craniosynostosis Panel that covers classical genes associated with craniosynostosis. The genes are carefully selected based on the existing scientific evidence, our experience and most current mutation databases. Candidate genes are excluded from this first-line diagnostic test. The test does not recognise balanced translocations or complex inversions, and it may not detect low-level mosaicism. The test should not be used for analysis of sequence repeats or for diagnosis of disorders caused by mutations in the mitochondrial DNA.

Analytical validation is a continuous process at Blueprint Genetics. Our mission is to improve the quality of the sequencing process and each modification is followed by our standardized validation process. Average sensitivity and specificity in Blueprint NGS Panels is 99.3% and 99.9% for detecting SNPs. Sensitivity to for indels vary depending on the size of the alteration: 1-10bps (96.0%), 11-20 bps (88.4%) and 21-30 bps (66.7%). The longest detected indel was 46 bps by sequence analysis. Detection limit for Del/Dup (CNV) analysis varies through the genome depending on exon size, sequencing coverage and sequence content. The sensitivity is 71.5% for single exon deletions and duplications and 99% for three exons’ deletions and duplications. We have validated the assays for different starting materials including EDTA-blood, isolated DNA (no FFPE) and saliva that all provide high-quality results. The diagnostic yield varies substantially depending on the used assay, referring healthcare professional, hospital and country. Blueprint Genetics’ Plus Analysis (Seq+Del/Dup) maximizes the chance to find molecular genetic diagnosis for your patient although Sequence Analysis or Del/Dup Analysis may be cost-effective first line test if your patient’s phenotype is suggestive for a specific mutation profile.

The sequencing data generated in our laboratory is analyzed with our proprietary data analysis and annotation pipeline, integrating state-of-the art algorithms and industry-standard software solutions. Incorporation of rigorous quality control steps throughout the workflow of the pipeline ensures the consistency, validity and accuracy of results. The highest relevance in the reported variants is achieved through elimination of false positive findings based on variability data for thousands of publicly available human reference sequences and validation against our in-house curated mutation database as well as the most current and relevant human mutation databases. Reference databases currently used are the 1000 Genomes Project (http://www.1000genomes.org), the NHLBI GO Exome Sequencing Project (ESP; http://evs.gs.washington.edu/EVS), the Exome Aggregation Consortium (ExAC; http://exac.broadinstitute.org), ClinVar database of genotype-phenotype associations (http://www.ncbi.nlm.nih.gov/clinvar) and the Human Gene Mutation Database (http://www.hgmd.cf.ac.uk). The consequence of variants in coding and splice regions are estimated using the following in silico variant prediction tools: SIFT (http://sift.jcvi.org), Polyphen (http://genetics.bwh.harvard.edu/pph2/), and Mutation Taster (http://www.mutationtaster.org).

Through our online ordering and statement reporting system, Nucleus, the customer can access specific details of the analysis of the patient. This includes coverage and quality specifications and other relevant information on the analysis. This represents our mission to build fully transparent diagnostics where the customer gains easy access to crucial details of the analysis process.

In addition to our cutting-edge patented sequencing technology and proprietary bioinformatics pipeline, we also provide the customers with the best-informed clinical report on the market. Clinical interpretation requires fundamental clinical and genetic understanding. At Blueprint Genetics our geneticists and clinicians, who together evaluate the results from the sequence analysis pipeline in the context of phenotype information provided in the requisition form, prepare the clinical statement. Our goal is to provide clinically meaningful statements that are understandable for all medical professionals, even without training in genetics.

Variants reported in the statement are always classified using the Blueprint Genetics Variant Classification Scheme modified from the ACMG guidelines (Richards et al. 2015), which has been developed by evaluating existing literature, databases and with thousands of clinical cases analyzed in our laboratory. Variant classification forms the corner stone of clinical interpretation and following patient management decisions. Our statement also includes allele frequencies in reference populations and in silico predictions. We also provide PubMed IDs to the articles or submission numbers to public databases that have been used in the interpretation of the detected variants. In our conclusion, we summarize all the existing information and provide our rationale for the classification of the variant.

A final component of the analysis is the Sanger confirmation of the variants classified as likely pathogenic or pathogenic. This does not only bring confidence to the results obtained by our NGS solution but establishes the mutation specific test for family members. Sanger sequencing is also used occasionally with other variants reported in the statement. In the case of variant of uncertain significance (VUS) we do not recommend risk stratification based on the genetic finding. Furthermore, in the case VUS we do not recommend use of genetic information in patient management or genetic counseling. For some cases Blueprint Genetics offers a special free of charge service to investigate the role of identified VUS.

We constantly follow genetic literature adapting new relevant information and findings to our diagnostics. Relevant novel discoveries can be rapidly translated and adopted into our diagnostics without delay. These processes ensure that our diagnostic panels and clinical statements remain the most up-to-date on the market.

Find more info in Support
Download PDF

Full service only

Choose an analysis method

$ $ 1700
$ $ 1000
$ $ 1900

Extra services

Total $
Order now

ICD & CPT codes

CPT codes

SEQ81479
DEL/DUP81479


ICD codes

Commonly used ICD-10 codes when ordering the Craniosynostosis Panel

ICD-10Disease
Q75.0Craniosynostosis

Accepted sample types

  • EDTA blood, min. 1 ml
  • Purified DNA, min. 5μg
  • Saliva (Oragene DNA OG-500 kit)

Label the sample tube with your patient’s name, date of birth and the date of sample collection.

Note that we do not accept DNA samples isolated from formalin-fixed paraffin-embedded (FFPE) tissue.

Subscribe to our newsletter